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OF CIRCULAR” RINGS

MONOCOQUE FUSELAGE

Miller and Karl D. Wood
.—. ..

SUMMARY

The formulas given in this report provide a simpli-*
fied method for the stress analysis of fuseiag8 bul%%eads
that are approximately circular rings of uniform cross

●
section.” Complicated load systems acting on a ring can
usually be resolved into simplified load systems; and for-
mulas for moment, axial force, and shear for such simpli-
fied load systems are given in this report. Illustrative
examples showing the use of t’his method in practical. s~r6ss-
analysis work are also included~ — —

.—
.—

INTRODUCTION -—T

Uany airplanes have fuselages of approximately circu-
lar cross section which are built around circular meta~ .
bulkhead rings connected by longitudinal metal stringers
and covered with a thin sheet-metal skin. A t~ical air-
plane of this sort is the Fleetster shown i-n figure 1-
The locations of the uain bulkhead rings fn the ’’~lee~ster’t
are shown i.n figure 1, A sketch of bulkhead ring ~oj j%
is shown in figure 2; the centroidai axts of the ring ‘is
seen to be approximately circular, and the cross s~-dtion
of the ring is unifo-rm for most of its ‘circumference- Un-
der the vargous ~oqdi~ions of flight kind landing, this
bulkhead ring is acted on–by-forces applied at sfk differ-
ent points on W? circumference 6f the ring, and sometimes
‘al@o by distribut~d t~ngential forces applied through the
skin of the fuselage~ Figure 2 shows a t~~ca~ loa&ing
of bulkhead ring Mo. 2- The most practical s:blution-for
the stresses iri *lie ring duo to a complicated loading sy&-
tem of this sort is probably obtained by re$ol.ving the com-
plicated loading system into a series of sitipled Ioadlng
systems for which the geaero,l formtilas can be derived- A.
Wpi,cal case of such a resolution of forces is shown in

—

“*
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2 N.A. O.A. Technical HOte No. 462

figure 3 where the loading system of figure 2 Is resolved
into three simplified loading conditions.

.
~~ object of this report is to summarize the formu-.. —

las derived fox the simplified loading conditions used i.n
tho stress analysis of the%leetsto# and to show how they
may be used in practical stress-analysis work by calculat-
ing the stresses in one of the main rings of the%leetater”
airplane.

Several simplified Ioading. conditions are include~--in t “
this report in addition to those originally solved by Roy
A. Miller (referenco l), and dofloction formulas are given
for sovoial CiiSt3S. The dorivati.on of tho eqyations has
boon omitted from the Frosont report boca.us”e the equations

B

may bo derived by any of sovcral methods, all of which aro
b

standard anfiare given in text books and in various papers
on the stresses in statically tndoterminato frarnos,

t
Tiio

authors in tho derivation of the equations prosoatod in
this report used tho so-called IImethod of least work.!’
(See references 1, 2, and 3.)

FORMULAS TOR SIMPLIFIED LOADING CONDITIONS

Each of the eleven simplified loading conditions is
designated hy a case number. Cases No. I to VI inclusive
are identical with the cases of the same number appearing
in reference 1. Figure 4 is a free body sketch of a por-
tion of the ring ?Jbo.w$.ngthe lqoan%ng of po6ittvQ 8ign# fOr
moment M, axial force P, and shea?s S adopted in ref-
erence 1 and continued here. Note that the positive mo-
ment is compression on the- inside of the ring, pos~ti.ve
axial foroe is tension, and posittv~ shear is as shown in
figure 4. If figure 4 is viewed from the left side of the
page, the ring may be considered analogou~ to a beam in
which the distanco x to any point is moqsurod from tho
right end--~f the beam, so that S = a dM/dx, Thfs rela-
tionship bqtween shear and monent will bo obsorved to OX-.

ist for all the equations tabulafe.d in this report.

Tables I and 11 givo formulas for M, P, and S for
cases I to IV. Theee formulas are identical with those
given in roferonce 1 except for the simplification of no-
tation shown &_t the b~ttom of tho tables.. Tables 111 and
IV giv4 formulas for cases V- to XI in the came manner,

I

b
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There are really only four essentially different cases
considered, namely: I, VI, ViII, ad IX. The other cases
may b.e derived from these four cases by substituting spe-
cial values for the general angles 0 and Q.

Ta3ie.V gives formulas for deflection of the horizon-
tal and vertical diameters for rings loaded as in cases 2
to VII inclusive; positive deflections indicating exten-
sion of diameters and negative deflections indicating
contractions of dianetors S= ndted at the bottom of %able
v. The tabulated formulas for deflection of diameters are
of use in connoctiou wit’h the problem of a ring reinforced
bya brace across a diameter, and for the general YurP08e.

of determining whether the deflections will appear exces-
sive to the occupants of the airplane. Formulas for d.e-
fl.ection of any point on the ring relative to some’refer-
ence point would also be of use but cannot conveniently
be tabulated because of their complexity. Such formulas
are readily obtainable for each loading case, however, %y
use of the g~ven moment equations and tho general integral
equations given in reforenco 30

—
.A

LIMITATION 03 THE FORMULAS FOR SqRESS AND DEFLECTION

The assumptions involved in the formulas here present-
ed include the usual assumptions for the elastic action of
straight beams, An itemized statement of the major assump-
tions follows: —

a) That cross- sections. of the ring which.are p_lane
before bending remain plane after bending; that t,he,elas-
tic limit of the naterial is not exceeded; that the modu-

- lus of elasticity is the same in compression as in ten-
sion; and that bending the beam does not appreciably
chafige the shape Qf its cross section. —

b) That the inside and outside radii of the ring
are appyoxirna~oly equal to the radius of the centroid of
the cross sOc*ion 62 t-he ring. -.

.-.

c) That the cross section of the beam is uniform
and the centroidal axis circular.

Assumptions a) are probably truo within the limits
of experi.uental measurement for loads t-hat do n6t produc~

.
.

●



4 E.A.C.A. Technical Note No. 462

permanent deformation of the ring:

Assumption b) involves negligible error in the deri-
vation of the moment equatioas (see refe”ren”ce 4) ?s..tdoes
involve appreciable error in the calculation of bending
stress from the moment equations. The error is due to the
fact that the bending-stress formula f = My/r is not ex-
actly true for bars initially curved, the stress on the in-
side of the ring actually being

7

rester, anfl on the outside
less, than that given by f = My I. For a ring of -the
proportions ‘shown on figure 2 (ratio of centroidal radius
to insido radius = -1.07) tho calculated bendiug stress Is
about 7 pa.roent in error.

Assumption c) involves more or leas error when applted
to some bulkheads as, for example, the bulkhead shown in
figure 2. Experience with other bending pr-oblems indicates
that thickening a portion of the ring as in figure 2 re-
sults in a greater moment at that point than would exist
in a uniform ring, and less moment at other points, stl-os6-
es calculated at the thick portion will therefore involve
errors on the unsafe side, but beaause of tile larger sec-
tion these stresses will usually not be the critioe.1 stress-
es in design. It is the opinion of the authors that the
formulas here tabulated may be safely applied to r$ngs in
which the variation in cross section is as great as shown
in figure 2 by using B as the centroidal r~dius which
applies to most of the ring and using the actual section
at eat-h point for the stress calculations.

APPLICATION 03’ FORMULAS TO DESIGN OF A MAIM KING

Two exemples of the use of the formulas in the de-
sign of a bulkhead ring follow:

pxamwle l,- The” stresses in bulkhead-ring No. 3 will
be calculated for an unsymme~rical loading condition. The
loads acting on the bulkhead ring, as determined from
specifications regarding design loads for.low anglo of at-
tack with 100 percent load on one wing and_ 70 percent load
on the other, are shown in figure 5. Resolution of this
loading system into three sim-plified loadlng conditions
is shown in figure 6.

*
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t

Tigure 6(a) is case X with W = 7,912 lb. and
e = 135050f;

Figure 6(b) is case I with If = 4,392 lb. ,
e = ~/2, and @ = 135°50~;

Figure 6(c) is case I with W = 445 lbo,
6 = TT/2, and C? =IT<

.

Points on the ring at which the values of M, P, and S
will be found are indicated in figure 5 by A; B,13~;
C,,cl; D,D!; E,E! ; F,VI; ~d G. The values -of M, P,
and S at these points are the algebraic sum of the sepa-
rate valties of M, Ps and S at the corresponding points
for the three simplified loadin

7
conditions represented in

figure 6. The equations for M RR, P/W, and S/If for case
X may le found in table IV. The equations for M/wR , P/w,
and S/W for case I may be found in tables I and II. Know-
ing the values of w and R in each case, the values of M,
P, and S may be found by substituting in the equations the
known quantities: Wi R, Q,@, x, ~, andm. The value of
R to be used in the equations is that of the radius to the
centrotd of the cross section$ namely~ R = 28*’7 inches~. For other notations, see Summary of Notation.

\
The solution of figure 6(a) follows:

—— .-
.——

,.

-,

WI = 7,912 pounds ---

R= 28.’? inches

e = 1350501 = 2.37 radians

s = sin .e = sin.135°501 = 0~697
,

c = Cos 6 = Cos 135°50~ =4.’717

(SC +0) = (0.697) (-0.717) 2.3-7 = 1.87.—

At the point a: x = 60° = 1*047 radians

“z = sin z = sin 60° = 0s866

m= 00s x = Cos So” = oo500-

and the equat50ns for ~j, p, and S in the range x = O
tox=e, where point B lies, are from table IV, case X:
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J

&= -Z+xx+z
m l-r

; (8C +0)

g Z$

w
=+z-y-— —

l-l

Substituting numerical values in the abovg=equatlons:

7912 X28.7 1-0.866+
1.0472X0.697+0.866

M= — X 1.87]
l-r i=f

= - 26,800 lb.-in.

P =- 7912[0.866+ 0,866X0.697X0,7~ -0.866X2.3~= 2770 lb.
‘l-r ‘rT

At the point F“: x = 152°54! =- 2.669 radians

z = sin x = Sill 152°54? = 0.456

(0= Cos x = COS” 152°54~ = -0.890

The equatians for U, P, ‘and 6 in the range x = 6 to
x = 2Tr - 0, where point F lies, are from table XV,
case X:

x=
WR .s+~+ : (8C + e),

Substituting! numerical values in the above equations:

~xo.697 +*%x %q~71M = 7912X28.7 &0.697 +~~”.fi

,,
--
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P = ‘7912 [+
0.456X0.697X0.717 -0.456%2.373

n l-r

7

=- 2150 lb.
—

O 697 -0.890X0.697X0.717+ o.89:x2.37jz2445 lb.
s = ‘7912 [- “n ‘l-r

The above values fdr M, P, and S appear under column {a)

in table VI. In a similar manner the values of M, F, and
S for the other points in figure 6(a) were found, and are
listed ia table VI.

I%e solution of figure 6(b) follows:
,,

W2 = 4,392 pounds —

R= 28.7 inches

e = l-r/2= 1.57 radians .

s —— sin 6 = sin n/2 = 1.000

c = Cos 6 = Cos l-T/2= o

(Se+c) = (1 x 1057 + o) ‘ 1.57 0

@ = 1350501 = .2.37 radians

u =. sin@=sin 135°50: = 0.697

e = COSQ = Cos 135°501 = -0.71.7

(no + 8)=(0.697 X 2.37 - 00717) = 0.934

Sa = (1)’ = 1

n2 = (0.697)2 = 0.485

S2 _ ~2 = (1 _ 0.485) = 0.515.

At the point B% x = 60° = 1~047 radians

z = sin x = 0.866

w = Cos x = 0.500

T~e equations for M, 3?, azd s in the range x.= O to

x = 0, where poiut B lies, are from table 1, case S:

.

4
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=+se+cn& n~-t-e+co
‘l-r l-r

fi(s=n’)+ n-s

Substituting numerical values I.n the abov= equations:

M = 4392 X28.7 [+~--+~5- + 0.697 - lJ

= -2370 lb.-in.

P= 4392 ~- O“;xl + 0’5x;”485~ = - 359 1%.
)

.

s = 4392[+ 0-8~6xZ - 0“866;0”485] = 622 lb.

At the point F: x = 152°541 = 2.669 radians

z = sin x = 0.456

0)= Cos x = - 0.890

The equations for M, P, and S in the range x = @ to
x = l-r, where point 1? now lies, are from table I, case 1:

A=
l’7R

+~-@-+U (ez.ne)
l-r n Tr

~ .-W$+QJJ
w

g ~sa -.Zna

w
=+y-—

Tr

Substituting numerical values in the above equations:

M 0.934 0.892X0.515]= 4398X28.7 C+ ~--- = 7150 lb.-in.
l-r

.

.

P = 4392 ~+ 0“8:0x1- ‘-89WVQ*485]= 640 lb.

.

b
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s = 4392 z+ 0“4~6x1- 0*456:0’485~ = 328 lb.

The above values for hi, P, and S appear under column (b)
in table VI. In a similar manner the values of M, P, and
S for the other points in figure 6(b) were found, and are
listed in table VI.

The solution of figure 6(c) follows: .
●

w= = 445 pounds
.—

= 28.7 inches
.

R

e = l-r/2= 1.57

s =sinO=l

c =COS6=0

(se+ c) = 1.57

@l-r= = 3.14 radians

n =sin@ =“0

e =Cosr? =-’”1

(nd+e) =-1 -

S2=1

At the point B: x = 60° = 1.047 radians.

z = sin x = 0.866

Q)= Cos x = 0.500

The equations for M, P, and S in the range x = O to
x = e, where point B lies, are from table 1, case I:

.

-!L=.+SQ-.iS--n@+e +Q(s2.n2)+n-s
WR n Tr ‘rT
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g &- zna
W=+n Y

Substituting numerical values in

M = 445 X28.7 [+ *+*+-

the above equations:

-!-o- lj!=- 290 1%.-in.

P’ 445 [- ‘“:X1 +-] = -,7? lb.

s = 445c + 0=8~6x1- 0E8~x01 = -123 lb:

At the point l?: x = 152°54; = 2.669 radians

z = sin x = 0.456

u =, ~os x = -0.890

The equations for M, P, and S in the range x = 9 to
x = @, where T now lies, are from table 1, case I:

M_
WR

=-l-

+=.

g
w

=+

S8+C” @.dL9.+St(&.n2)+ n-s
1-r Tr ‘l-r

Loo + Loo + “z
1-r 1?

~- *+@
‘l-r

Substituting numerical values in the above equations:

M= 1 0*8g0xl + O - 0.456] = 1010 lb.-in.445X28.7[+ ~+fi- ~

P = 445 r+ 0-8;0x1- ‘@8:0x0 + 0.4563 = 330 lbo

s
O.456Xl

445[+~”
0.456X0 -.=

“’n
0.8901 = ~ 333 lb.

.

The above values for M, P, and S appear under column (c)
in table VI. In a similar banner the values of M, P, and
S for the other points in figure 6(c) were derived.

8

.

.—

.

,
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.

The algebraic sum of the values of moment, axial
force, and shear for the simplified loading conditions
shown in figure 6 are given in the last column-of table
VI. Using these total values, the stresses and margins
of safety in the cross section of”-the riag”at the points
lieted may he computed.

Calculations for the stresses at points 3 and F
on bulkhead ring No. 3 are shown in table VII. Items (1)
to (3) in table VII are. the values of moment, axial force,
and shear Just calculated. Items (4) to (12) inclueive
are the properties of the cross sections. Items (13) and
(14) are the stresses in the inner and outer flange at
points B and F, computed from the formula f = f My/I+
P/A by substituting the values listed initems (1) to
(12) ● A sa~le calculation for the stress in the outer
flange at point B follows:

.- . —
—.

f = + MyX/I + P/A

f+
-29460 X 2003 ~ 2340=

3.49 1.20

f =. 1?,150 + 1,950 =“- 15,200 lb./sq.in..

The sign of this stress being minus, the stress is com-
pressive in accor~ance with the notation at the bottom of
table VII. If the allowable strese is known, the margin

of safety is computed from the usual equation:

Item (15) is the shearing stress in the web and ie calcu-
lated from the formula f~ = SQ/bI substituting valu”es
from items (3”)to “(12). A sample calculation for this
stress at point B follows:

f8 = SQ/bI

f8
= 590 X 0.982 .

0.064 X 3.49

-,—. fs “= 2,600 lb./sq.in..

Item (16) is the shear,fng load ~n the flange rivets. and is
calculated from t-he.formula P~ = SQZp/I substituting

-

.—

.
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values from items (3) to (12). A sample computation for
this load at point B fallows:

Pr = 117 pounds per rivet.

Example 2___ In this example, moments and forces will
‘be found at various points on the cirmmaference of a rang
which is reinforced b–y a tie rod across its vertical diam-
eter, using tile equations for deflection given in table T
as a basis for the solution by the method of consistent
deflections.

,
Figure 8 is a free body sketch of such a bulkhead

ring acted on by a system of loads determined by the land-
ing load factor for the design. Figure 9 shows the six
free body sketches into which figure 8 can be resolved,
including a free l)odY sketch of the tie rod acted. on by
unknown forces F and a corresponding sketch of the ring
acted on. by equal and opposite forces l?. Tine proceduro
in solving for 3’ is as follows:

.

(1)

(2)

(3)

(4)

Compute the deflection dy of the vertical diam-
eter under the actioa of the forces shown in
fi~re 9(a), (b), (c), and (d)-.

,

Compute the deflection of the ring (dyeo) and
of the cable (%fo} under the action of a

force F.

Compute F

E’= 1,000

Compute the

= 1,006 pounds.

from tho equation:

‘Y

‘yeo + ‘yfo

moment, axial force, and shear at

a

.

.

—

various points on the r3ng from the equations
of tables I to IV for the five loading cases
shown in figure 9, using the value of F just
obtained. For the ring use: R = 28.9 inches,
x = 107 pounhs per square inch, and I = 3.301
hl.~ ; for the cable use A = cross-seational

.
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area = 0.0387 square irich, L = effective
length = 50 inches, and Z = 20,400,000
pounds per square inch.

.
Proceeding as out~ined above, and using the formulas

for deflection of vertical diatieter dy, given in tab18 V:

13

(1) For figure 9(a) dya = ‘#[ + .: (s-ce)-t-c-l + ~ 1
=4070X(28.-9)3 X 00137=0.407 in.

107 X3.301

.
For fig&e “9(b)

‘dyb=%[:-:l “ “--

. 5420X(28,9)S= x 0.149=0.590 in.
107X3.301

.

{
For figure 9(c) with e = 41°45! - —

.

WR3

~yc = ~
[

.&_ ~ (S6+C)+ s +2
211 1=2200X(28.9)3 X 0.0542=0.087 in.

107X3.301

For figure 9(d) with 9 = T/2, a = 136015!, and -
—

Q =“?. 2,670 lb.
~

[
~ .++”?. : (Se+c) -1-

+S+#(n@+e)-n 1
-2670X(28.9)3 x 0.0493= -0.096 in.
lC? X3.301

Total deflection, figures 9(a) to’ 9(d) = 0.988 in.

(2) For
[ .117R3 u ~

FO=l,OOO lb. dyeo. = ~ 2 - ~- with v
= !gl ,!!

.* ‘- -xO.298=O.1O9 in.

.

.

.
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nor 170 = 1,000 lb.,
+

from the definition of ~ = $ ~

FLdyfo = ~ = J090 x 50
= 0.063-in.

0.0387X20.4X10G

dY = 0.988
(3) For J? = l,OOOX——— X1,0C)O=5,740 lb.

‘yeo+dyfo 0.2.09+0.063

Referring to figure 8, it may be seen that the effect
of the bracing cable is to transfer 5,740 pounds of
the 10,840 pounds at point A“ to point G, thus
distributing the load more evenly around the ring,

(4) Using the value of F just obtained, the moment, RXiaI.

force, and shear at various points on the ring may %e-”
computed from the equations of tables I to IV for the
first five loading causes shown in figure 9 by the
methods outlined in example 1.

.

.

SUMMARY OF NOTATION

M, bending moment at any cross section of the ring, pound-
inches, Positive M causes compressio~ on the inside
of the ring.

.-

P, axial force {tangential) at any cross section of the
ring, pounds. Positive F causes tension in the ring.

s, shear force at any cross section of the ring> pounds.
Positive S is as shown in figure 4.

w, load applied to ring, pounds.

R, radius to centroid of cross section of the ring4 Inchen.

E, modulus of elasticity of material of ring, pounds per
square inch.

1, moment of ine-rt~a of oross section of the r~ng, in.4.

e,@ angles specifying location of loads on ring, measured
from yadius at lowest point on the ring as shown in
sketche-s, radians.
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x, angle measured from radius at lowest point on ring to
any moint on circumference of ring as shown tn figure—
4,- r>dians.

— .—

s = sin 6
c = Cos e
n = sin @

\
abbreviations to simplify

0 = Cos @

J

writing of formulas
z = sin x
w= Cos x

ax, change in length of horizontal diameter, inches.

‘Y ‘ change in length of verttcal die~meter, inches.
.

f, stress, compressive or tensile,
— —

lb./sq.in.

fs, -shelzring stress, lb./sq.in.

Y9 distance from neutral axis to outer fibers of cross
section, inc-hes.

Q, static moment of half t-he area of the cross section
about the neutral axis, in,= .
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Tkible V. Deflections. Crises I *e VII.
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‘hblaVI. Moments, Axial~oreo, and Shmr
at VariousPointsin BulkheadRing

LoadingShown in Figs. 6
No. 3 for tha
and 7.

Point LoadingC-co (skotehat right)
on

rimg (a) I (b) (e) I Total
-I--

E
E’

;’

Momont
0 1+ 7s950

-26,800
+26?800
-12,800

- 2;370
- 29370
-12,700

+12 ~800 -12,700
+109200 -12,300
-10,200 -12,300
+5s*4OO +109700
-55,400 +10,700
+37,800 + 7,150
.37,800 + 7,150

G t o + 41890

A
B
B’

d
c’{

D
Dt

E{

E’{
r
r’
G

&id Fore.

0
+ 2,’770
- 2,770
+ 39200
+ 39200
- 3,200
- 3,200
+ 3,010
- 3,010
+ 2s235
- 3,280
+ 3s280
- 2,235
- 2,150
+ 2,1s0

6

+ 1,4s0
. 155
. 155
- 1,760
- 1,760
- 2,840
- 2s840
- 4,050
+ 1~630
+ 1?630
- 4,050
‘+2n445
+ 29445
+ 29965
+ 2,965

+ 19750 + 9,700
. 290 -a9,460
. 290 +24,140
- 2,320 -27,820
- Z,320 - 2,220
- 2V94C - 5,040
- 2,940 -25,440
- 1,360 +64,740
- 1,360 -46,060
+ 19010 +45~960
+ 1,010 -29,640
+ 6#390 +11~280

718
35s

. 359
0

+ 4s390
+ 49390

0
+ 4~380
+ 4,300
+ 3~580
+ S15
+, 515
+ 39580
+ 640
+
+ !2

Sliaar

o
+ 62~
. 622
+ 718
. ?18

812
+ 812
- 2,650
+ Soo
.
+ 2~6S0
+ 3a8

328
0
0

. 142 - 860

. 71 + 2,340

. 71 - 3,200
0 + 3~200

+ 450 + 8,040
+ 450 ,+1,640

0 - 3,200
+ 470 ‘+7,860
+ 470 + 1,840
+ 415 + 69230
+ 415 - 2,350
+ 415 + 4,210
+ 415 + 1,760
+ 330 - 1?1s0
+ 330 + 39120
+ 14a + 860

0
+ 123
. 123
+ 142

142
18

+ 18
. 220
- 220
+ 220
+ 220
- 339
+ 333

448
+ 445

+ 1,450
+ S90
. 900

900
- 2,620
- 3s670
- 2,010
- 6,920
+ 1$910
+ 19350
- 1,180
+ 2,440
* 2~450
~ 2s520
~ 3,410

ar D
E 1,

—c .\/ ;

‘\\ /’
‘A

(a)

4392# 4392?

“m

*
x E’

D

—c lqL :,_

B B’

439% 439d

(:)

89C#

— —

A

(0)

—
. .-
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TABLE VII. CALCULATION OF STRESSES IN ?3ULKHEA.D RING
. No. 3 at points B and F

\

T

No. It&m SymboZ

T-

Point B Point F

1 Bending moment, lb.-in. M -29.460 +45,960

2 Axial force, lb. P + 2,340 --1,180

3 Shear, lb. s + 590 -t2,440
I t 1 h

—

Frc

T

5

6

‘7

8

9

10

11

erties of sections (-~i~.~ 1

Depth of section, in.

Area, sq.in.

Moment of inertia. in.4

Total static moment, in.3

Static moment of flange, ino3
.’

Dist. to extr. outer fiber,
in.

Disi. ta extr, inner fiber,
in.

Web thickness, in.

Flange rivet spacing, in.

--~
4.04

1.20

3.49

.982

.852

2.03

2.01

.064

.813

.-.

4.04

-_,

1,20

3.49

.982

.852

2.03

2.01

.064

.813

Stresses

13 Strass in lb./sq.in. f

;: ‘+ -

= -MF:2 I + I’/A . S - ~
Innsr flange.—.

14 Strass in lb./sq.in. f = +MY1/I +P/~ -15~200 +25s736
Outer flange

.——.. ——— ——
1.5 Sliee)ring, ltO/scrrin9 fs = SQ/bI

El

2,600 10,7~
st~~ss jn ~~b

——
16 Shaar iGad on sQip /1Pr=~ 1171 484

Flange rivets, lb.

Note:
Tensile stress is -1-
Compressive stress is -
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1

Figure 1.- “FleetSter” airplane. Main ~l~ead ri%S
are at points where wing and landing gear

join the fuselage, and are indicated by

arrows.
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2830

I

lTo.482

13. 2830 lb.

??i@o 2,3

.—

13. —

—
—.—__ . _

—

.-
111.

—

I

Figure 2.- Bulliheadring No.2 of lJFleetster’iairpl=e -.

with symmetrical loadi~.

‘-,

W2 = 2830 1%. W2 = 2830 lt.

fwl=

.5100 lb.
p+q k J ‘-1%.80’ “=-+-”’” “l~$jo

W2 = 2830 lb. W2 = 283C W3 = 15280 . ●

(a>.Case VI (b) Case I lb, (c) Case II. .
with W = 15100 lb. with W “=--2830 lb. with W = -15280 l-b.

.—

3’igurez.- Loading shown in figure 2 resolved into siqlified ~o@i~g _ .==
conditions.

--
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‘1

1

Fibgre 4,- Sketch showing directions of moment,
shear, axial force, and angular

location assumed appositive in this report.

2ig.’4 -.

...-.

—.

.-
. .
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A890 l~o

12304,lb. IG 3529 lb.

Figs. 5,6

I’igure5.- Bulkhead ring No. 3 of llFleetsterlf
airplane with unsymmetrical loading.

WI = w~ = W2 =“ W2 = a?~ = 890 lb.
7912 lb. 7s12 lb. 4392 lh. AW92 lb. 4

—c

. G

c

(a) Case X (II) Case I (c) Case I
with W = 7912 lb. with W = ?&?? 1“~, ~~ with ~ = 445 1%.,

Figure 6.- Loading shown
cond.itiom.

~> = rT/2 e = Tr/2, -d ~ = TT

in figure 5 resolved into simplified loading ~ ___
.

—

lb.
—

. . —. .- — --.- .-
..-“+.
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~-–311----+...0401skin
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~11 ~lux:.:
f

\ )
‘“ T ‘

tingles
1.991!

—.—-----— -

Neutral axis
L
----

; ---t.66411web
1

rig. 7

A= 1.20 in.2

,__.._L
Ina = 3.49 in.4

Q= 0.982 in.3

Figure 7.= Section of bulkhead ring No. 3
of llFleetsterUairplane.
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~i~S. 8,9

W
N.’.

\ 1!/,’ ;!
36°151 ‘.< I;,,.

v

136015
—. .. —.. -

IJl/’L. , ,
- . ..... ..
4070

22ca lb.
J

f..
2Z130 lb.

.

l-b .

108W 1’3.

Figure 8.- Reinforced bullhead >in,gwith loads.

5420 . 5420 2200 I 2200

e i-r/2 4’
(a) C~se VI (b) Case 111

26’70

e

(d) Case I (s) Case V

l-b .

2
lb.

!/’
..—.—

/k\—v.<gg
220 lb. “

/\

(c) Case II

“1

3’

F

(f)

Wgure 9.- Loading shown in figme 3 re~olved into simplified
loading conditions.
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